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INTRODUCTION

Sperm whales Physeter macrocephalus, the largest
of the toothed whales, are found throughout most of
the world’s oceans (Rice 1989). Life-long units of
related females and their young offspring are often
distributed throughout temperate, subtropical, and
tropical zones where they reside throughout their

lives, although the extent of movement by females is
debated (Rice 1989, Mizroch & Rice 2013). Stomach
content analysis of hunted whales revealed that
mesopelagic squid (primarily Humboldt squid) are
the largest component of the diet of sperm whales
from the southern Eastern Tropical Pacific (ETP;
Clarke et al. 1976, 1988). Direct observation, such as
collection of feces and acoustic data, has provided
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valuable information about sperm whale foraging
ecology (Whitehead & Hope 1991, Whitehead 1996,
Whitehead & Rendell 2004); however, collection of
such data can be challenging because it relies on
close access to animals in the wild.

Stable isotope analysis has been used to study a
wide range of ecological topics including food web
structure, diet, and the movement of organisms
within marine systems (discussion based on reviews
by Hobson 1999, Michener & Kaufman 2007, Mon-
toya 2007, Graham et al. 2010, and Newsome et al.
2010 unless otherwise noted). Carbon isotope (δ13C)
values are particularly useful as indicators of auto-
trophic carbon sources (e.g. Rau et al. 1982). In food
webs, there is a relatively weak δ13C increase of ap-
proximately 1‰ with trophic transfer, therefore δ13C
values can be linked to foraging regions. In contrast,
stable nitrogen isotope (δ15N) values are used to as-
sess the relative trophic structure of food webs, be-
cause they enrich in 15N by approximately 3‰ with
each trophic transfer. However, baseline phytoplank-
ton δ15N values show strong spatial variation, reflect-
ing a combination of nutrient source and plankton
growth rate, among other factors (Somes et al. 2010);
therefore, it is difficult to differentiate the effect of
trophic transfer versus baseline variability when
 using isotope ratios collected from animal tissues.

Consumers integrate isotopic values throughout
the food webs in which they feed, so their tissues
reflect both isotopic variability at the base of the food
web, as well as the predator’s trophic position. The
δ13C and δ15N values of sperm whale tissues has been
used to identify prey items, habitat use, migration,
and dietary differences associated with their com-
plex social structure (Ruiz-Cooley et al. 2004, Mar-
coux et al. 2007a,b, Mendes et al. 2007a,b). For stud-
ies targeting animal life history, teeth represent
bio-archives of isotopic information. Sperm whales
lay down growth layer groups (GLGs) in their teeth,
which are assumed to form annually throughout their
entire lives; therefore sampling GLGs can offer high-
resolution isotopic records of a whale’s lifetime
(Mendes et al. 2007a,b). A GLG is defined as a pair of
1 dark and 1 light layer (Scheffer & Myrick 1980).
Paired measurements of δ13C and δ15N values from
GLGs can be used to identify foraging region, food
web interactions, and movement of large odonto-
cetes (Mendes et al. 2007a, Newsome et al. 2009,
Borrell et al. 2013, Matthews & Ferguson 2014), and
possibly differences in behavior among clans of
sperm whales (Marcoux et al. 2007a,b).

Compound-specific isotope analysis of amino acids
(CSIA-AA) has emerged as a powerful approach to

discriminate oceanographically important differ-
ences in isotope baseline from differences in trophic
structure. For carbon, the R-groups of essential
amino acids (EAAs) cannot be synthesized by most
animals (e.g. Rawn 1983) and must be assimilated
from the diet. Therefore, EAA δ13C values undergo
minimal fractionation with trophic transfer, and can
be used as a direct proxy for δ13C values at the base
of food webs (e.g. Vokhshoori et al. 2014, Schiff et al.
2014, McMahon et al. 2015a). Conversely, animals
often re-synthesize the R-groups of the non-essential
AAs (NEAAs), so these δ13C values can be used to
make inferences about metabolic processes and diet
quality (McMahon et al. 2013). For nitrogen, the δ15N
values of some AAs (e.g. lysine and phenylalanine)
typically change little with trophic transfer (e.g.
McClelland & Montoya 2002, Chikaraishi et al.
2009), so the δ15N values of these ‘source’ AAs thus
reflect baseline values (recently reviewed by McMa-
hon & McCarthy 2016). In contrast, the δ15N values of
other AAs (e.g. glutamate and proline) become
strongly 15N-enriched with trophic transfer, with
somewhat predictable trophic discrimination factors,
so that the isotopic difference between trophic and
source AAs can be used to assess change in trophic
position (McMahon & McCarthy 2016). These meth-
ods have been applied to sperm whale skin from the
outer California Current system (Ruiz-Cooley et al.
2014) and killer whale teeth from the Arctic (Matthews
& Ferguson 2014) to distinguish trophic effects from
temporal variation in baseline values. As top preda-
tors, trophic position and baseline biogeochemistry
information preserved in sperm whale tissues repre-
sents a broad integration of mesopelagic food webs,
and teeth records in particular may provide a record
of how food webs have changed through time using
CSIA-AA.

Because female sperm whales exhibit long-term
regional fidelity (Whitehead et al. 1997, Mate &
Ortega-Ortiz 2008), isotopic data from their teeth
may be particularly useful for investigating temporal
changes within an oceanographic zone. Our study
focused on female sperm whales processed at a
whaling station in northern Peru (Fig. 1). The ocean
region off the coast of Peru (the ETP) is highly pro-
ductive, accounting for approximately 10% of the
global ocean’s primary productivity, driven by a vast
upwelling system that supports extensive fisheries
(Fiedler & Talley 2006, Kessler 2006, Pennington et
al. 2006). Productivity in this ecosystem is sensitive to
the El Niño-Southern Oscillation (ENSO), with nega-
tive impacts from El Niño events in both coastal and
offshore communities (e.g. Wang & Fiedler 2006).
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In the present study, our main objective was to use
bulk and AA isotope records from sperm whale teeth
to better understand foraging ecology (especially
trophic position) and intra-specific variation in forag-
ing among female sperm whales from northern Peru.
Furthermore, because nitrogen isotopes have been
extensively studied throughout the ETP, we also
investigated if published nitrogen isoscapes from
southern ETP sediment core tops (Tesdal et al. 2013)
could be coupled with sperm whale tooth CSIA-AA
data to constrain possible foraging habitats of these
whales.

MATERIALS AND METHODS

Tooth collection

Between 1959 and 1960, Clarke et al. (1968) re -
corded data such as length and sex of hunted sperm
whales and collected samples such as stomach con-
tents and teeth to examine diet (Clarke et al. 1976,
1988) and determine age (Clarke et al. 1968, 1980) of
sperm whales processed at whaling stations through-
out South America. We selected 10 teeth which had
been collected at the whaling station in Paita, Peru,
from a set of teeth previously age-characterized by
Clarke et al. (1980). Our criteria to select teeth for the

present study were: (1) the final layer around the
pulp cavity was clear, distinguishable, and able to be
sampled, (2) the individual was at least 10 yr old at
time of death, and (3) GLGs were clear throughout
the tooth. The number of teeth used in our study is
comparable to sample sizes (n = 9 to 11) from other
studies using teeth for stable isotope analysis (e.g.
Mendes et al. 2007a,b, Newsome et al. 2009, Borrell
et al. 2013).

Tooth preparation and dentin sampling

Clarke et al. (1980) originally identified and
counted GLGs from these same teeth, using an acid
etching approach (Sheffer & Myrick 1980). For this
study, we needed to sample a fresh tooth surface
below the acid-etched area. We therefore resurfaced
all teeth, and verified Clarke et al.’s (1980) GLG iden-
tifications using a New Wave Research micromill
paired with an Olympus SZ61 microscope. Starting
with the previously prepared teeth, we polished the
surface of each tooth half by sequentially decreasing
the carbide powder grit size to remove the acid-
etched layer. To avoid contamination, a different pol-
ishing lap was used for each size of grit size, and
teeth underwent 10 min of ultrasonic washing (Bran-
son 3510 ultrasonicator) between each grit and again
once polishing was completed. Polished teeth were
mounted onto 2 × 3 inch glass slides by their outer
surface using Crystal Bond. A bubble level was set
on the sampling surface of each tooth to make sure
the polished surface was level.

GLGs were then sampled using the micromill spec-
ified above, fitted with Brasseler carbide drill bits
ranging in size from 0.4 to 1.2 mm, depending on
GLG width. GLG widths were measured using a 90°
guide to ensure consistency. Width was used to dis-
criminate auxiliary layers from annual GLGs. GLGs
decrease in width moving from the tip to base of a
tooth with the exception of auxiliary layers, layering
in excess of the typical light−dark couplet per year
pattern (Scheffer & Myrick 1980). We excluded neo -
natal and weaning period layering from the main
analysis of this study, because they represent periods
during which whales were dependent on their moth-
ers for food, but they are identified and plotted in
Fig. S1 in the Supplement at www. int-res. com/ articles/
suppl/  m579 p201_ supp. pdf. Weaning periods are typ-
ically identified by a gradual decrease in nitrogen
isotopic values during the first years of life (Newsome
et al. 2010). The weaning age of sperm whales is sug-
gested to be variable between geographic areas,
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Fig. 1. South Eastern Tropical Pacific (ETP), indicating the re-
gion of this study. Sperm whale teeth used were collected at
the Paita whaling station in northern Peru (red star) in 1959
and 1960. Estimated extent of historical whaling around
Paita is outlined in black (adapted from Clarke et al. 1968

and Whitehead et al. 1997)
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with an overall average of 8.5 yr (Rice 1989, Mendes
et al. 2007b).

Bulk stable isotope analysis

Approximately 1600 ± 5 µg of untreated dentin
powder from each GLG was weighed into 5 × 9 mm
tin capsules (Costech) for stable isotopic analysis fol-
lowing Brault et al. (2014). Samples were analyzed
for δ13C and δ15N values in the Stable Isotope Labora-
tory at the University of California, Santa Cruz
(UCSC-SIL; https://websites.pmc.ucsc.edu/~silab/)
following standard protocol. Briefly, stable isotope
values were determined on an EA 1108 elemental
analyzer (Carlo Erba) coupled with a Thermo Finni-
gan DeltaPlus XP isotope ratio mass spectrometer
(Thermo Scientific). Isotopic results are reported
using standard delta (δ) notation in parts per thou-
sand (‰) as: δ13C or δ15N = [(Rsample/Rstandard) − 1] ×
1000, where Rsample and Rstandard are the 13C/12C or
15N/14N ratios of the sample and standard, respec-
tively. The δ13C values were referenced to Vienna-
Pee Dee Belemnite (V-PDB), while δ15N were refer-
enced to atmospheric N2. For acetanilide standards
(3 analyzed at the start, middle, and end of each
 session), the standard deviation was 0.05‰ for δ13C
and 0.03‰ for δ15N values.

Compound-specific stable isotope 
analysis of amino acids

A total of 6 whales, 2 from each pattern (described
below), were selected for CSIA-AA. For 5 of the 6
whales, 2 mg of dentin from GLGs corresponding to
the years 1948 to 1952 were combined to form 5 dif-
ferent composite samples. For 1 of the 6 whales, 3.33
mg of dentin from GLGs corresponding to the years
1950 to 1952 were combined. These GLGs were
selected because they were representative of the pat-
tern observed in mean tooth isotope values.

These 6 dentin samples were demineralized with
0.25 N HCl and prepared for CSIA-AA as described
in Brault et al. (2014). Following demineralization,
the remaining collagen was hydrolyzed using 6 M
HCl for 22 h at 110°C and then stored in a 4°C
freezer. For acetylation and derivitization, HCl was
evaporated under a stream of N2 gas. Individual
AAs were converted to trifluoroacetic anhydride
derivatives following Silfer et al. (1991) and their
isotopic values were measured using a Thermo
Trace gas chromatograph coupled to a Thermo

Finnigan DeltaPlus XP isotope ratio mass spectrome-
ter (oxidation furnace at 940°C for carbon or 980°C
for nitrogen, and reduction furnace at 630°C for
carbon or 650°C for nitrogen). For δ13C analysis, a
DB-5 column (50 m × 0.32 mm, 0.52 µm film thick-
ness; Agilent Technologies) was used. For δ15N
ana lysis, a BPX5 column (60 m × 0.32 mm, 1 µm
film thickness; SGE Analytical Science) was used.
Analytical variability for individual AA isotope val-
ues from extracted tooth collagen ranged from 0.1
to 0.6‰ for δ13C and 0.1 to 0.8‰ for δ15N, across all
AAs measured.

Using this approach, the δ13C and δ15N values of
the following AAs could be reproducibly quantified
in all 6 dentin samples: alanine (Ala), aspartic acid +
asparagine (Asp), glycine (Gly), glutamic acid + glu-
tamine (Glu), isoleucine (Ile), leucine (Leu), lysine
(Lys), phenylalanine (Phe), proline (Pro), serine
(Ser), and valine (Val). We could measure the δ15N
value of threonine (Thr), but not its δ13C value. Fur-
thermore, co-elution of Val and Ser prevented accu-
rate peak integration, thus δ13C values calculated
for these AAs were unlikely to be correct and were
excluded from our results. For carbon data, we pres-
ent glutamic acid + glutamine as Glu and aspartic
acid + aspara gine as Asp, while these AAs are re -
ported as Glx and Asx, respectively for nitrogen
data. For carbon, the EAAs we were able to measure
were Phe, Ile, Leu, and Lys. The NEAAs we meas-
ured were Asp, Glu, Pro, Ala, and Gly. For nitrogen,
the trophic AAs (Tr) we measured were Glx, Asx,
Ala, Leu, Pro, and Val. For source AAs (Sr), we
measured Gly, Ser, Lys and Phe. We also measured
Thr, the metabolic AA.

Analysis of data

We used correlation analysis (isotopic value versus
age) to identify any temporal trends that were consis-
tent among whales. To examine the influence of El
Niño events on isotopic variability, we calculated
yearly averages, 95% confidence intervals, and vari-
ance, and then compared these parameters between
El Niño and non-El Niño years (Quinn et al. 1987)
using Student’s t-test (α = 0.05).

We also calculated average δ13C and δ15N values
and standard deviation for each whale. The relation-
ship between average δ13C and δ15N values was com-
pared using linear regression analysis. We used lin-
ear regression analysis to compare δ13CEAA to bulk
δ13C values, and δ15NSr and Δ15NTr−Sr (equal to δ15NTr

− δ15NSr) to bulk δ15N values. To constrain the possi-
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ble foraging locations of these whales,
we compared the δ15N values of Phe
from 6 whales to an isoscape con-
structed from published sedimentary
records from the ETP (Tesdal et al.
2013).

RESULTS

Bulk stable isotope analysis

We sampled approximately 232
GLGs from the teeth of 10 female
sperm whales. Individuals ranged
from 12 to 34 yr old, with the oldest
post-weaning GLG dating to approxi-
mately 1926. The range of ages we
counted for isotope sampling in this
study differ slightly from the range of
ages (7 to 27 yr) of Paita females (n =
27) counted by Clarke et al. (1980).
Isotopic values averaged across all 10
teeth in this sample set were −11.5 ±
0.4‰ for δ13C and 15.1 ± 0.6‰ for
δ15N. Averages for all layers within
individual teeth ranged from −12.1 ±
0.2 to −10.7 ± 0.3‰ for δ13C values,
and from 14.4 ± 0.5 to 15.8 ± 0.4‰ for
δ15N values.

Correlation analysis of bulk δ13C
and δ15N values with age for each
whale revealed 3 patterns of isotopic
change (Fig. 2, and Fig. S2 in the Sup-
plement). Furthermore, whales with similar temporal
trends also showed greater overlap in isotopic values
than those with differing trends. We defined Pattern
1 (Pa541 and Pa418) as whales in which both δ13C
and δ15N values generally increased between 1930
and 1960. These whales had the lowest average δ13C
values (−12.1 ± 0.2 and −11.7 ± 0.3‰, respectively)
and δ15N (14.3 ± 0.5 and14.5 ± 0.4‰, respectively) in
our sample set. Although the record from Pa418 rep-
resents only half of the time period of Pa541, the
inter-annual variation in δ13C and δ15N values within
GLGs of both whales were similar during the period
when both whales were alive.

Pattern 2 (Pa734 and Pa665) is defined as whales
for which δ13C values neither increased nor de -
creased from ca. 1930 to 1960, while δ15N values gen-
erally decreased. The average δ13C (−11.7 ± 0.1 and
−11.2 ± 0.2‰, respectively) and δ15N (15 ± 0.5 and
15.2 ± 0.3‰, respectively) values for these individu-

als were intermediate within the entire data set. Pat-
tern 2 whales had a narrower spread in δ13C values
than Pattern 1 and Pattern 3 (defined below) whales.
Interestingly, the δ13C values for these 2 whales did
not overlap at any point during the time series,
whereas their δ15N values overlapped for much of the
record.

Pattern 3 contained the remaining 6 whales, which
did not exhibit consistent increasing or decreasing
temporal trends for either δ13C or δ15N values. The 2
whales with the highest overall isotopic values, Pa15
and Pa700 (δ13C: −10.7 ± 0.3 and −11.2 ± 0.3‰ and
δ15N: 15.8 ± 0.4 and 15.5 ± 0.3‰, respectively), are
plotted in Fig. 2; the remaining Pattern 3 whales are
plotted in Fig. S3. These whales had the widest
spread of isotopic values out of the 3 temporal pat-
terns such that for any given year, isotopic values of
both δ13C and δ15N differed by up to 2‰ among indi-
viduals. Conversely, differences in isotopic values for
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a given year between individuals within both Pattern
1 and Pattern 2 were ≤1‰. Furthermore, Pattern 3
whales had isotopic values that overlapped with
those of Pattern 2 whales.

There was a significant linear relationship between
the average bulk δ13C and δ15N values among the
sampled whales (R2 = 0.59, n = 10, p = 0.0095; Fig. 3).
The range in average isotopic values among the
teeth was approximately 1.5‰ for both δ13C and δ15N
values. Further, whales with different patterns (as
defined above) tended to separate in terms of aver-
age bulk δ13C and δ15N values (Fig. 3). A summary of
bulk isotopic data for all whales, including the Pat-
tern 3 whales not shown in Fig. 2, can be found in
Table S1 in the Supplement.

Compound-specific isotope analysis of amino acids

The δ13C values of individual amino acids from the
6 sperm whales selected for CSIA-AA ranged from
−32.4 to 9.0‰ (Table S2). The EAAs were substan-
tially 13C-depleted (δ13CEAA: −21.0 to −26.4‰; Fig. S4)
relative to both bulk and NEAA δ13C values
(δ13CNEAA: −11.9 to −8.7‰). The 13C-enrichment in

NEAAs relative to EAAs reflects the expected in -
crease in the degree of re-synthesis of amino acid R-
groups in heterotrophs (e.g. McMahon et al. 2013).
The δ15N values of individual amino acids from the 6
whales ranged from −38.8 to 27.4‰ (Table S3), with
a pattern of variation similar to that expected for het-
erotrophs. Trophic-AAs were uniformly 15N-enriched
relative to source-AAs, and bulk δ15N values that
were intermediate between the 2 groups. Addition-
ally, Thr was strongly 15N-depleted relative to all
other AAs (Fig. S5). The δ15N values for Glu, the
canonical trophic-AA, ranged from 21.9 to 24.7‰,
while δ15N values for Phe, the canonical source-AA,
ranged from 6.6 to 9.6‰.

With the exception of a single individual (Pa700),
the whales showed a strong and significant linear
correlation between δ13CEAA and bulk δ13C values
(R2 = 0.63; Fig. 4). Overall, the relative ordering of
whales in terms of pattern designations (as defined
above based on bulk δ13C and δ15N values) also corre-
sponded with δ13CEAA values. The δ13CEAA values of
the 2 Pattern 3 whales were, however, very different
from one another. While Pa15 had the highest δ13CEAA
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values of all 6 whales, and also fell on the same linear
relationship between bulk δ13C and δ13CEAA, Pa700
did not. While the EAAs for Phe, Leu, and Ile have a
positive relationship to bulk δ13C values, the meas-
ured Lys values do not exhibit the same trend and
thus were excluded from calculations of average EAA
for each whale (Fig. S6). Finally, δ13CNEAA values were
13C-enriched relative to bulk δ13C values (Fig. S4),
however, unlike the EAAs, there was no clear rela-
tionship between bulk δ13C and δ13CNEAA values
(Fig. S6).

There was a strong and significant linear correla-
tion between average bulk δ15N values and δ15NSr

values from the same teeth (R2 = 0.89; Fig. 5A), and
the whale groupings followed the same order for
δ15NSr as observed for average bulk δ15N values
(Fig. 3). In contrast, the Δ15NTr−Sr value, a proxy for
relative trophic position (Sherwood et al. 2014),
showed no relationship with bulk δ15N values (R2 =
0.1; Fig. 5B).

We found no statistically significant relationship
(Student’s t-test, p >> 0.05) between average yearly
bulk isotopic values among whales from each pattern
and known strong El Niño events (1940−1941, and
1957−1958; identified by Quinn et al. 1987) either
among the whales overall or for any of the identified
patterns (Fig. S8).

DISCUSSION

Intra-specific variability in sperm whale 
dentinal stable isotopes

We suggest that the 3 different temporal isotopic
patterns in our data set reflect 3 distinct life-foraging
strategies used by sperm whales in the ETP. In other
words, whales may have foraged predominantly in
different habitats with distinct baseline isotope val-
ues and/or had different diets. In the southeastern
Pacific, 4 clans have been identified by characteristic
behavior and vocal codas using acoustic methods
and photo identification (Rendell & Whitehead 2003).
Each clan spans thousands of kilometers (Jaquet &
Whitehead 1996) and has specific diving and forag-
ing behaviors that are consistent among clan mem-
bers through both time and space (e.g. Whitehead &
Rendell 2004). Differences in foraging behavior
among clans have also been detected in the δ13C and
δ15N values of sperm whale skin collected around
Chile, Peru, and the Galapagos Islands (Marcoux et
al. 2007a). Sperm whales foraging relatively in more
inshore regions tended to have higher δ13C values
than whales foraging offshore, while δ15N values in
whales were inversely related to latitude (Marcoux et
al. 2007a). The time series of δ13C and δ15N values
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from our study records both baseline primary pro-
duction isotope values and diet composition through-
out the lives of each individual. Therefore, similar
isotopic patterns through time may indicate similari-
ties in behavior and/ or foraging zone, suggesting
that whales belonged to the same clan. In the North
Atlantic, differences in diet, habitat use or movement
among stranded sperm whales have previously been
evaluated based on bulk stable isotope analysis on
teeth at specific ages (Borrell et al. 2013). However,
this earlier study did not find a similar time series of
isotopic patterns among whales as we observed in
Peru.

When analyzing time series of carbon isotopic data,
the Suess Effect, a decrease in atmospheric 13C
through time caused by the burning of fossil fuels
(Keeling 1979, Gruber et al. 1999) could contribute to
the depletion of bulk δ13C values in records of histor-
ical biological samples such as whale teeth and
baleen. However, estimates of the Suess Effect in the
central Pacific during the lifetimes of these whales
was small (approximately −0.05 ‰ decade−1; McMa-
hon et al. 2015a), and therefore would have had a
minimal impact on our time series results. Studies on
baleen plates of bowhead whales from the North
Pacific also concluded that the Suess Effect had little
contribution to declining trends in δ13C values from
the second half of the 20th century in that region
(Schell 2001). While the Seuss Effect varies in differ-
ent ocean regions (e.g. Gruber et al. 1999), the results
from different regions and latitudes of the Pacific all
suggest minimal impact on our data. 

In our study, differences in bulk isotopic values
averaged across the lifetime of each whale do not
support the hypothesis that the whales derived from
a population with a homogeneous distribution or life
history. Instead, the isotopic separation observed
among whales based on averaged δ13C and δ15N val-
ues, and the significant linear relationship between
bulk δ13C and δ15N values, suggest that the sperm
whales had distinct foraging areas and/or trophic
positions that were maintained throughout much of
the lifetime of each whale. Additionally, the shallow
slope of the regression of δ13C versus δ15N values (m =
0.91; Fig. 3) indicates that trophic position alone can-
not explain the observed differences among whales.
If trophic position was the driver, we would expect a
much steeper slope of ~3, based on the canonical dif-
ferences in isotope δ13C versus δ15N with trophic
transfer (McMahon et al. 2013). However, because
both isotopic baseline and trophic position differ-
ences may underlie differences in average isotopic
values (Post 2002, McMahon et al. 2013), we used

CSIA-AA to evaluate the importance of these 2 fac-
tors as drivers of the observed relationships.

Both δ13C and δ15N values of AAs strongly support
the interpretation that isotopic baseline variation,
likely due to differences in predominant foraging
zone, is the key driver for differences in bulk isotopic
values among these whales. Because the EAAs in
consumers are derived only from primary producers,
the relationship between bulk δ13C and δ13CEAA

values (Fig. 4) corresponds with the expectation for
baseline-driven differences. In contrast to EAAs, con-
sumers typically synthesize the carbon skeletons of
NEAAs to varying degrees (Schiff et al. 2014, Vokhs -
hoori et al. 2014). As a consequence, the relationship
between bulk δ13C and δ13CNEAA values is expected to
become progressively weaker with successive trophic
transfer (e.g. Schiff et al. 2014), also consistent with
our data (see Fig. S5 in the Supplement). For nitrogen,
the strong correlation be tween bulk δ15N and δ15NSr

values, as well as the lack of relationship between
bulk δ15N and Δ15NTr−Sr values likewise indicate that
baseline differences in the δ15N values of primary pro-
ductivity, linked to foraging zone rather than trophic
level, drive bulk isotopic variation. Together, these
data support the interpretation of distinct temporal
patterns discussed above (Fig. 2), and the idea that
the whales we sampled occurred in groups which
maintained predominantly different home ranges and
life histories.

Baseline isotope values are known to vary spatially
in relation to biogeochemical and oceanographic fac-
tors (e.g. Somes et al. 2010, McMahon et al. 2013). At
mid-latitudes, baseline δ13C and δ15N values are typ-
ically higher in nearshore and benthic zones than in
offshore, pelagic systems. Primary producers are typ-
ically 13C-enriched in productive coastal regions due
to faster growth rates and larger cell size of phyto-
plankton relative to offshore primary producers in
more oligotrophic systems (e.g. Rau et al. 1982, Goer-
icke & Fry 1994, Popp et al. 1998). For nitrogen, dif-
ferences between oceanic regions are largely related
to the nitrogen source. Primary producers in oligotro-
phic gyres often have lower δ15N values due to fixa-
tion of 15N-depleted atmospheric N2 (~0‰; Dore et al.
2002, Montoya 2007), whereas those in highly pro-
ductive coastal regions typically have higher values
reflecting the more 15N-enriched global subsurface
nitrate pool (~5‰), and sometimes, highly 15N-
enriched nitrate generated by denitrification (10‰ or
more; Sigman et al. 2009). Therefore, if feeding loca-
tions of the sampled whales ranged from coastal to
offshore regions, one interpretation of the observed
patterns in bulk δ13C and δ15N values is that higher
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isotopic values represent whales that foraged closer
to shore than those with lower isotopic values, a pos-
sibility noted for sperm whales from the ETP by Mar-
coux et al. (2007a).

While an onshore versus offshore explanation may
be reasonable in the context of basin-scale oceano-
graphic features, if all whales sampled here fed rela-
tively close to the Paita whaling station, then the
oceanographic complexity of this region likely neces-
sitates a more nuanced interpretation. In the region
surrounding mid-20th century Peruvian whaling
grounds (Fig. 1), complex interactions of denitrifica-
tion, incomplete nitrate utilization, and advecting
surface water with progressively fractionated nitrate
away from the equatorial upwelling cold tongue,
together result in regional nitrogen isotope gradients
that are essentially opposite to the general basin-
scale tends described above (Codispoti & Chris-
tensen 1985, Altabet 2001, Mollier-Vogel et al. 2012).
Nearest to shore, where upwelling is most persistent
and strong, δ15N values are lower than further off-
shore where upwelling is not as strong (Wada & Hat-
tori 1976, Saino & Hattori 1987).

The ETP has been subject to intensive paleo-
ceanographic study, and regional nitrogen iso -
scapes (based on sediment core-top records; Tesdal
et al. 2013) can provide an invaluable tool to con-
strain potential predominant core foraging areas.
The ranges in δ15NPhe values from the 6 whales
analyzed (see Table S3 in the Supplement) corre-
spond well with δ15N ranges in core-top sediment
isoscapes (Fig. 6), suggesting that they may approx-
imate δ15N values at the primary producer level.
This conclusion is consistent with results from mul-
tiple other systems showing δ15NPhe values from
consumers can represent a proxy for the expected
δ15N value of export primary production (e.g. Ruiz-
Cooley et al. 2014, Sherwood et al. 2014, Vokh -
shoori & McCarthy 2014). The correspondence is
not exact, since feeding studies have indicated that
δ15NPhe can change with trophic transfer (Chika -
raishi et al. 2009). However, the widest literature
review to date has shown that δ15NPhe changes with
trophic transfer can be highly variable, and its vari-
ation between taxa and systems re main poorly
understood (McMahon & McCarthy 2016).

Accordingly, there is no single known
correction factor to determine baseline
values from a top predator, and existing
corrections are associated with substan-
tial uncertainty. Therefore, while the
low δ15NPhe values of Pattern 1 individu-
als likely do not provide an exact proxy
for primary production δ15N values, they
do suggest that these whales most likely
foraged nearest to the Peruvian coast
(Fig. 6). The intermediate δ15NPhe values
of Pattern 2 individuals correspond best
with value ranges expected for the
equatorial cold tongue. Finally, the
δ15NPhe values in Pattern 3, as with all
other isotopic measurements for this
pattern, were more variable. However,
the highest δ15NPhe value measured
within this group was also the highest in
the en tire data set, suggesting foraging
within regions more offshore, and likely
either to the north or south of the equa-
torial cold tongue (Fig. 6).

These geographical assignments are
clearly hypotheses; however, the corre-
spondence observed between δ15NPhe

and core-top bulk δ15N values illustrates
the potential for CSIA-AA data to be
coupled with detailed isoscapes to iden-
tify core foraging regions of highly
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mobile marine top predators. Additional nitrogen
data, as well as ongoing refinements in CSIA-AA,
would increase the confidence of such results in
future studies. For example, δ15NSr values may ulti-
mately prove a more reliable measure of baseline
than δ15N values of Phe alone (McCarthy et al. 2007,
McMahon & McCarthy 2016), but their use for track-
ing foraging zone will require calibration (similar to
calibrations for δ13CEAA reported by Vokhs hoori et al.
2014). Furthermore, a parallel ana lysis of a carbon
iso scape, perhaps derived from sediment core-top
data, would reveal if baseline δ13C values covary
with δ15N values at a regional scale, as occurs in our
data (Fig. 3). Such covariation has been observed
broadly in isoscapes (e.g. McMahon et al. 2013) and
has also been identified in sperm whale and other
bio-archive studies (Ruiz-Cooley et al. 2014, McMa-
hon et al. 2015b), but a δ13C database for sedimentary
organic carbon, as opposed to total carbon, from this
region is currently not available.

Temporal variability in sperm whale habitats

Long-term changes in the bulk δ13C and δ15N time
series for some of the 10 sperm whales could be due
to shifts in prey of the sperm whales or shifts in the
biochemistry of their habitat. We lack a CSIA-AA
time series, which would allow a detailed deconvolu-
tion of the impacts of these factors on temporal
trends. While ontogenetic shifts in behavior can lead
to changes in diet composition that can cause cou-
pled shifts in δ13C and δ15N values (Lesage et al.
2001, Overman & Parrish 2001), only Pa418 showed
coupled positive shifts relatively early in life, where
this effect is expected to be most pronounced. Stom-
ach content analysis has shown that Humboldt squid
are a primary component of sperm whale diet in the
southeast Pacific (Clarke & Paliza 2001), and Hum-
boldt squid have been highly abundant throughout
the eastern Pacific recently (Nigmatullin et al. 2001).
There are no data on squid abundance during the
mid-20th century, so we cannot evaluate the degree
to which changes in abundance of this prey (or the
abundance of whales relative to squid) might con-
tribute to temporal isotopic variability among our
sampled whales.

Habitats used by our 3 groups of whales also could
have responded differently to large-scale perturba-
tion. Because El Niño events exert strong atmos-
pheric and oceanographic forcing on the ETP (Wang
& Fiedler 2006), we were especially interested in
their effects on the present time series. Somewhat

surprisingly, we did not observe any large, signifi-
cant, or consistent shifts in isotopic values associated
with El Niño events among any of the 3 recognized
patterns (Fig. S8 in the Supplement). However, there
are a number of reasons why a clear El Niño signal
might be difficult to observe in the isotopic time
series from these whales. First, how changes in bulk
isotopic baseline would propagate into an apex pred-
ator (or any other part of a system) would depend on
the relative strength of each El Niño event (Boiseau
et al. 1998). Second, the impacts of El Niño events on
mesopelagic ecosystems are highly variable and im -
pact different species in different ways (e.g. Mc -
Clatchie et al. 2016). Finally, the lack of an El Niño
signal in our time series could also relate to limita-
tions of the bulk isotope analyses, or to differing clan
foraging strategies. However, these possibilities can-
not be teased apart with the present sample set.

CONCLUSIONS

Our results illustrate the power of using bulk stable
isotopes coupled with CSIA-AA to examine foraging
strategies of highly mobile top predators such as
sperm whales, especially for ecological studies using
historical or archaeological samples. This approach
may be one of the very few for which hypotheses
about foraging region, trophic structure, and clan
divisions can be addressed. The correspondence be -
tween δ15NPhe data from the mid-20th century sperm
whales and δ15N values from isoscapes offshore from
the Paita whaling station are particularly compelling,
suggesting that such CSIA-AA data may offer a win-
dow into the habitat use and ecology of past whale
populations. We suggest that establishing a better
mechanistic understanding of the correlations be -
tween compound-specific carbon and nitrogen iso-
tope proxies and primary production, as well as
understanding their propagation into top predators,
will be an important research area for further devel-
oping this approach.
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