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Abstract Dissolved organic carbon (DOC) is the largest pool of exchangeable organic carbon in the ocean.
However, less than 10% of DOC has been molecularly characterized in the deep ocean to understand DOC’s
recalcitrance. Here we analyze the radiocarbon (14C) depleted, and presumably refractory, low molecular
weight (LMW) DOC from the North Central Pacific using atomic force microscopy to produce the first
atomic-resolution images of individual LMW DOC molecules. We evaluate surface and deep LMW DOC
chemical structures in the context of their relative persistence and recalcitrance. Atomic force microscopy
resolved planar structures with features similar to polycyclic aromatic compounds and carboxylic-rich
alicyclic structures with less than five aromatic carbon rings. These compounds comprise 8% and 20% of the
measurable molecules investigated in the surface and deep, respectively. Resolving the structures of
individual DOC molecules represents a step forward in molecular characterization of DOC and in
understanding its long-term stability.

Plain Language Summary The marine dissolved organic carbon (DOC) reservoir is similar in size to
that of atmospheric carbon dioxide and plays an important role in the ocean carbon cycle. DOC comprises
a vast mixture of diverse molecules, the majority of which remain structurally uncharacterized. Identification
of DOC molecular structures will aid our understanding of DOC cycling. Here, we present the first images
of individual DOC molecules using atomic force microscopy. We compare images of low molecular weight
DOC molecules extracted from samples collected at different depths in the North Central Pacific. Our results
help unravel the molecular architecture, formation processes, and cycling of marine DOC in the ocean. This
work demonstrates that atomic forcemicroscopy can facilitate structure determination in oceanic mixtures and
provide an additional complimentary toolbox for analytical techniques in geophysical relevant environments.

1. Introduction

The marine dissolved organic carbon (DOC) reservoir is about 200 times larger than the living biosphere
and similar in size to the atmospheric CO2 pool (Hansell et al., 2009). Marine DOC is operationally defined
as organic carbon passing through a 0.2–0.7 μm filter. The majority of DOC is presumed to originate from
surface ocean primary production, because the stable isotopic signature of DOC is relatively homoge-
neous, and similar to that of marine phytoplankton (Williams, 1968). Thus, recently produced DOC has
modern radiocarbon (14C) ages similar to that of dissolved inorganic carbon (Beaupré & Aluwihare,
2010; Walker, Primeau, et al., 2016). Paradoxically, the mean 14C age of deep DOC, ranging from 4000
to 6,400 14C years in the Atlantic to Pacific (Druffel & Griffin, 2015; Druffel et al., 2016), indicates that a
portion of DOC survives multiple deep ocean mixing cycles. To explain this enigma, there are two DOC
cycling paradigms. The dilution hypothesis proposes that all DOC molecules are intrinsically labile.
However, the high molecular diversity and dilute concentration of these molecules create a “dilution
threshold” that exerts a primary control on DOC cycling by limiting the probability of molecular interac-
tion with microbes (Arrieta et al., 2015; Barber, 1968; Dittmar, 2015). Alternatively, a growing body of
molecular-composition, incubation, and 14C studies suggest that structural recalcitrance (i.e., the chemical
composition and molecular structure of DOC molecules) predominantly controls the long-term persis-
tence of DOC in the deep ocean (Benner & Amon, 2015; Jiao et al., 2010; Walker, Beaupre, et al., 2016).
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While dilution and structural recalcitrance are not mutually exclusive (Jiao et al., 2014; Wilson & Arndt,
2017), studies that can further constrain DOC molecular structures will aid in understanding the relative
role each mechanism plays in determining the long-term persistence of DOC.

To date, only a small fraction (~10%) of DOC can be readily identified as biomolecules, such as amino acids,
sugars, lipids, and fatty acids (Kaiser & Benner, 2009). It is difficult to characterize DOC on a molecular level
because DOC is a heterogeneous mixture in a highly saline solution. Ultrahigh-resolution mass spectrometry
(Fourier-transform ion cyclotron resonance mass spectrometry, FT-ICR-MS; T. Dittmar & Stubbins, 2014; Koch
& Dittmar, 2006) and multidimensional nuclear magnetic resonance spectroscopy have revealed thousands
of structural features in DOC, and the presence of more than 5,000 molecular formulas (Hertkorn et al., 2006,
2013). However, the ability to unambiguously identify molecular structures by the formulas of the molecules
is not straightforward, because the theoretically possible structural isomers per molecular formula exceed
many millions (Hertkorn et al., 2006). The portion of DOC that is not ionized is also not known. From these
techniques, high molecular weight (HMW) DOC was estimated to contain 8% carboxylic-rich alicyclic
structures (CRAM), while the surface DOC contained polar biopolymers such as carbohydrates (Benner
et al., 1992; Hertkorn et al., 2006).

Scanning probe microscopy is a powerful tool to directly image single molecules at the atomic scale.
Recently, atomic force microscopy (AFM) with CO-functionalized tips demonstrated the real-space visualiza-
tion of the chemical structure of molecules (Gross et al., 2009). The methodology has since been applied to
different molecular systems, ranging from on-surface chemical reactions (de Oteyza et al., 2013; Kawai
et al., 2016; Pawlak et al., 2017; Riss et al., 2016; Schuler et al., 2016; Schulz et al., 2017; van der Lit et al.,
2013) to natural products (Gross et al., 2010; Hanssen et al., 2012; Hinaut et al., 2018; Schuler et al., 2015;
Schuler, Fatayer, et al., 2017). A fraction of DOC has been previously characterized by AFM (Maurice &
Namjesnik-Dejanovic, 1999; Pan et al., 2008). However, atomic resolution was not achieved.

Here, we report the first structurally discerned images of surface and deep DOC from the North Central Pacific
Ocean using atomic-resolution low-temperature AFM. We analyzed unique lowmolecular weight (LMW) DOC
samples extracted from both the surface and deep ocean (Broek et al., 2017) and determined the structures
present in the background, refractory DOC pool, which likely represents the oldest marine ocean DOC
(Beaupré & Aluwihare, 2010). LMW DOC consists of the refractory and ultra-refractory compounds (Benner
& Amon, 2015; Walker et al., 2011) with old 14C ages (Broek et al., 2017; Walker et al., 2011; Walker,
Beaupre, et al., 2016) responsible for its long-term stability. Two previously characterized LMW DOC samples,
collected from surface (7.5 m) and deep (2,500 m) waters of the North Pacific Ocean, were selected for this
study. These samples were collected with a combined ultrafiltration and solid-phase extraction (SPE)
approach (Broek et al., 2017), thus allowing for unambiguous isolation and characterization of LMW DOC.
Chemical structure assignment of individual molecules was based on previous AFM image studies of model
molecules with different planar aromatic hydrocarbon cores and diverse moieties (Gross et al., 2010; Kawai
et al., 2016; van der Lit et al., 2013; de Oteyza et al., 2013; Riss et al., 2016; Schuler et al., 2015, 2016;
Schuler, Fatayer, et al., 2017; Schuler, Zhang, et al., 2017).

2. Materials and Methods
2.1. Sample Collection

Seawater samples were collected aboard the R/V Kilo Moana in May 2015 during the research cruise KM1506.
Sampling was conducted at the Hawaii Ocean Time Series station ALOHA (A Long-Term Oligotrophic Habitat
Assessment; 22°450N, 158°000W). Surface water was collected via the vessel’s underway sampling system
through an intake pipe situated approximately 7.5 m below the waterline. Deep ocean (2,500 m) seawater
was collected via successive casts of a rosette equipped with 12 × 24 L Niskin Bottles. LMW DOC was isolated
as detailed in Broek et al. (2017). Briefly, seawater was filtered through a 0.2 μm cartridge filter and then ultra-
filtered with 2.5 kD tangential flow ultrafiltration membranes in order to remove particles and HMW DOC,
respectively. The permeate of the ultrafiltered system, containing only LMW DOC, was then acidified to
pH 2 and concentrated by sorption onto a SPE resin (Agilent Bondesil PPL, 125 μm particle size, part
#5982-0026). Ultrafiltration permeate (2,000–3,000 L) was loaded onto approximately 500 g of PPL SPE sor-
bent, equivalent to a loading of 2–3 mg-DOC per gram of sorbent. The sorbed LMW DOC was then desalted
with ultrapure water and eluted from the SPE sorbent with methanol. These methanol-eluted solutions were
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then concentrated via rotary evaporation and subsequently dried to
powder via centrifugal evaporation. Dry material was homogenized,
transferred to precombusted (450 °C, 5 hr.) glass vials, and stored under
desiccation until further analysis. A total of 15.5 μmol-DOC/l was recov-
ered from the surface and 11.7 μmol-DOC/l from 2,500 m, representing
(20 ± 1)% and (29 ± 5)% of total DOC respectively.

2.2. Scanning Probe Microscopy Experiments

Themolecules to be studied were deposited on a Cu(111) single crystal,
partially covered with bilayer NaCl as a substrate. The Cu(111) sample
was cleaned by standard sputtering and annealing cycles. NaCl was
evaporated at a sample temperature of 270 K to form bilayer islands
(Bennewitz et al., 1999). Molecules were thermally evaporated from a
silicon wafer by flash-heating onto the substrate (Schuler et al., 2015),
kept at 10 K, to reduce surface diffusion of the molecules. That prepara-
tion led to a submonolayer coverage of separated molecules on the
surface. Scanning probe microscopy experiments were performed
using a home-built, combined scanning tunneling microscope (STM)

and atomic force microscope based on a qPlus force sensor (Giessibl, 1998), operated in ultrahigh vacuum
(10�10 mbar pressure) and at low temperature (5 K). The STM images were obtained in constant-current
mode. All AFM images were obtained in the frequency-modulationmode (Albrecht et al., 1991; oscillation fre-
quency of f0 = 30 kHz and amplitude of A = 0.5 Å) in constant-height mode and at sample bias V = 0 V. The tip
was functionalized with a CO molecule prior to molecular imaging (Bartels et al., 1997; Gross et al., 2009).
Previously, AFMwith CO-functionalized tips have been used to identify individual molecules of heavy oil frac-
tions (Schuler et al., 2015; Schuler, Fatayer, et al., 2017). For these complex molecular mixtures, the compar-
ison between the AFM-identified molecular structures and the distribution of carbon atom number and
double-bond equivalent obtained by mass spectrometry demonstrated the representativeness of the AFM
measurements (Schuler, Fatayer, et al., 2017). However, this representativeness is only given up to a maximum
molecular weight lower than 1,000 g/mol, because of the preparationmethod used, which is by flash-heating a
silicon wafer (Schuler et al., 2015). Molecules larger than 1,000 g/mol are usually fragmented in this preparation
method before they sublime (Schuler et al., 2014). This restriction should represent no issue for the molecules
studied here, with maximummolecular weights of about 300 g/mol observed. On the other hand, the samples
investigated here contained many small molecules, which are mobile under the influence of the scanning
probe tip even at T = 5 K and subpicoampere tunneling currents. These small, mobile molecules cannot be
resolved by AFM or STM, and thus, the images shown are representative for the molecules in the samples that
bonded strong enough to the NaCl and Cu surfaces to be imaged.

The AFM images show the frequency shift (Δf) as gray scale, where darker regions correspond to greater
negative frequency shift. The images are obtained on the falling slope of Δf(z) above the most protruding
parts of the molecules (Gross et al., 2009). The tip height is typically chosen such that in the brightest regions
(most repulsive interactions), the frequency shift is around Δf = 0 Hz or slightly positive by a few Hz. In the
darkest regions Δf is typically on the order of �10 Hz.

The procedure for analyzing the molecular mixture on the surface consists of first surveying the surface with
STM in a typical area of approximately 5,000 nm2 as demonstrated in Figure 1. Afterward, each molecule in
the surveying area is analyzed by constant-current STM and constant-height AFM.

3. Results

We resolved the molecular characteristics of the LMW North Pacific DOC (Broek et al., 2017) from the surface
(S, 7.5 m) and deep (D, 2,500 m). To obtain a measure of the average sizes of the evaporated molecules, we
measured 46 molecules in the surface sample S and 48 in the deep sample D by STM (Schuler, Fatayer, et al.,
2017, and the supporting information). The average area size of the surveyed molecules S and D is quantified
as (112 ± 60) Å2 and (120 ± 60) Å2, respectively. Therefore, within the area measurement limitation via STM,
the average molecular area for both samples is equal. For both samples, most of the scanned molecules were
mobile at the surface, being dragged by the STM tip while imaging. This could indicate nonplanar molecules

Figure 1. Scanning tunneling microscopy overview image of the sample pre-
paration. Sample bias V = 0.4 V, tunneling current I = 1 pA.
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as well as molecules with larger side groups, such as alkane chains (Schuler, Zhang, et al., 2017). Moving
molecules with the STM tip occurred even for mild experimental parameters such as tunneling currents of
subpicoamperes. The molecules shown here are a representative random sample of the molecules that
bonded to the Cu(111) and NaCl surfaces strongly enough to be imaged by AFM.

Constant-height AFM images from sample S are shown in Figure 2. Surface molecules were challenging to
resolve with AFM, because most molecules possessed moieties that would protrude out of the surface and

Figure 2. Atomic force microscopy images of the surface (S) North Pacific LMW DOC. Scale bar is 5 Å. All images have the
same scale.

Figure 3. Atomic force microscopy images of deep (D) Pacific Ocean LMW DOC. Scale bar is 5 Å. All images have the same
scale.
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hinder the atomic resolution needed for the unambiguous interpretation of their chemical structures. In the
surface, only ~8% of the measured molecules showed planar moieties that could be atomically resolved.
Structures S1 through S3 were planar enough to be resolved well; at least one benzene ring from each of
these structures was observed. The right side of the molecule S2 showcases a region where the repulsive
interaction between tip and molecule, because of a protruding moiety, does not allow for unambiguous,
complete structure elucidation. Molecules S5 to S8 exemplify molecules for which not even a partial chemical
structure could be assigned by high-resolution AFM, also because of the presence of moieties protruding out
of the surface.

Molecules from the deep were more suitable than those from the surface for characterization by high-
resolution AFM (Figure 3). In the deep, approximately 20% of molecules were planar, and enabled structure
elucidation by AFM imaging. Either a part of the planar aromatic core or the entire molecule was resolved by
analyzing their frequency shift map. We observed single (D1) to quadruple (D5) methyl groups attached to
the molecules as well as two (D1) to five (D3) carbon rings in the surveyed molecules. Molecules with func-
tional groups that strongly interact with the CO-functionalized tip represent the majority of the measured
molecules, such as molecules D7 and D8.

Additional insights for the chemical structure assignments can be gained by comparing the experimental
AFM images with AFM simulations. The simulations use as input the hypothetical structure of a given mole-
cule to calculate a map of the corresponding frequency shift by using the probe-particle model (Hapala et al.,
2014; for the simulated AFM images see supporting information Figure S2). The assigned chemical structures
are presented in Figure 4. Molecules are identified as 5,6-dihydro-4H-benzo[a]phenalene (S1); 2,6-
dimethylnaphthalene (D1); 7-methyl-1,5-dihydroacenaphthylene (D2); 1,3-dimethyl-indeno[2,1-a]phenalene
(D3); 5,6,8-trimethyl-2,3-dihydro-1H-cyclopenta[b]naphthalene (D4); 1,2,4,5-tetramethylbenzene (D5); and
6-methyl-1H-indene (D6).

D1 D2

D4 D6

D3

D5

S1

CH3

H3C

H3C

H3C

CH3

H3C

H3C CH3

CH3 H3C

H3C

CH3

CH3

CH3

Figure 4. Assigned chemical structures for the surface (S1) and deep (D1–D6) Pacific LMW organic content. Molecules are
identified as 5-methyl-5,6-dihydro-4H-benzo[a]phenalene (S1); 2,6-dimethylnaphthalene (D1); 7-methyl-1,5-dihydroace-
naphthylene (D2); 1,3-dimethyl-indeno[2,1-a]phenalene (D3); 5,6,8-trimethyl-2,3-dihydro-1H-cyclopenta[b]naphthalene
(D4); 1,2,4,5-tetramethylbenzene (D5); and 6-methyl-1H-indene (D6).
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The structural information of the molecules identified by AFM imaging includes both samples and is pre-
sented in Table 1. The double bond equivalent varies between 4 (D5) to 15 (D3). The average double bond
equivalent of the elucidated structures is 8.4 ± 3.6. The molecular weight varies from 130 Da (D6) to
280 Da (D3) and is on average 188 ± 56 Da. The H/C ratio of the polyaromatic hydrocarbon (PAH) core ranges
from 1 (D5) to 0.6 (D3). The average H/C ratio of the PAH core is 0.84 ± 0.13. Considering the entire molecular
structure, the H/C ratio ranges from 1.4 (D5) to 0.73 (D3). The average H/C ratio is 1.0 ± 0.2. The aromatic index
(Koch & Dittmar, 2006) of our proposed structures ranges from 0.40 (D5) to 0.69 (D3). The average aromatic
index is 0.6 ± 0.1.

We observed several differences between the samples collected at the surface and the deep. More three-
dimensional structures were observed for the surface sample compared to the deep. On average, we find
more PAHa, greater aromaticity, and less aliphatic moieties for the surveyed molecules from the deep. For
this reason, only one molecule of the surface sample S could be assigned an unambiguous structure.
However, the data for themany unassignedmolecules in S enable us to draw the conclusion that those mole-
cules feature nonplanar geometries with nonplanar carbon structures and an increased number of aliphatic
moieties. This indicates a larger relative content of sp3 hybridized carbon compared to the deep molecules
(D). Second, the molecules we observe in the deep sample revealed several planar structures with aromatic
sp2 hybridized carbon frames, indicating an increased aromaticity of the molecules in the deep compared to
those in the surface. We observe many five-membered carbon rings in the sample collected from the deep.
We do not find any significant difference between the LMW size of surface and deep molecules given by STM
area estimation (see supporting information Figure S1).

4. Discussion

We show that high-resolution AFM can be applied to study LMW DOC on an individual molecule basis.
Although the molecular diversity of DOC is high, this single-molecule approach allows for the elucidation
of chemical structures of selected individual planar DOC. We find molecules with less than five carbon rings,
often containing a 5-membered ring within the assigned structures (Figures 2 and 3). In comparison with pro-
posed structures on the basis of FT-ICR-MS experiments, our results support the presence of carboxylic-rich
aliphatic structures CRAM (containing 5-membered rings) first identified by Hertkorn et al. (2006) in deep
HMW DOC.

We also identified several planar PAH structures within the LMW DOC samples. The biochemical origin of
such molecules is unclear, but the molecules share similar characteristics found in CRAM, and dissolved black
carbon (BC). Dissolved BC is formed from the incomplete combustion of biomass and fossil fuels and is trans-
ported to the ocean by rivers, where a portion of BC cycles in DOC on millennial time scales (Coppola &
Druffel, 2016; Jaffe et al., 2013; Ziolkowski & Druffel, 2010). Dissolved BC is the oldest identified compound
in marine DOC and is refractory in the deep ocean (up to 23,000 14C years, 6 ± 2 % of DOC; Coppola &
Druffel, 2016; Ziolkowski & Druffel, 2010).

Compared to other complex organic molecular mixtures found in nature, such as asphaltenes (Schuler et al.,
2015) and heavy oil fractions (Schuler, Fatayer, et al., 2017), the molecules present in LMW DOC are smaller
and less planar. Moreover, the DOC imaged also shows a higher incidence of methyl groups attached to
the molecules and an increased occurrence of aliphatic groups in comparison to the asphaltenes. These

Table 1
Structural Analysis of the Molecular Structures Inferred by High-Resolution AFM Imaging

Molecule
Molecular
formula

Molecular formula
(PAH core)

Molecular
weight (g/mol)

Molecular weight
(PAH core) (g/mol) H/C

H/C
(PAH core) DBE AI

D1 C12H12 C10H8 156.22 128.17 1.00 0.8 7 0.58
D2 C13H12 C12H10 168.23 154.21 0.92 0.84 8 0.62
D3 C22H16 C20H12 280.36 252.31 0.73 0.60 15 0.68
D4 C16H18 C13H12 210.31 168.23 1.13 0.92 8 0.50
D5 C10H14 C6H6 134.22 78.11 1.40 1 4 0.40
D6 C10H10 C9H8 130.19 116.16 1.00 0.89 6 0.60
S1 C18H16 C17H14 232.32 218.29 0.89 0.82 11 0.61
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observations are consistent with many of the hypothesized complex aliphatic structures suggested by FT-
ICR-MS work (Hertkorn et al., 2013). This is expected because of the different time scales involved in the
respective chemical reactions and the much larger maturity of the asphaltenes (more than 106 years) com-
pared to the marine DOC pool (103–105 years).

While our sample set is limited, the results here potentially have implications for understanding the relative
importance of structural recalcitrance versus dilution as mechanisms for controlling the long-term persistence
of deep ocean DOC. First, our LMW SPE DOC, by definition, has a high efficiency for extraction of LMW planar
aromatic DOC. The surface and deep LMW DOC concentrations in this study are nearly identical
((15 ± 1) μmol/l for the surface, (12 ± 1) μmol/l for the deep; Broek et al., 2017). Thus, it is reasonable to assume
that we can interpret the differences in % planar aromatic DOC between the two samples as a real composi-
tional difference. As mentioned above, we find that surface LMW DOC has very few planar aromatics (~8%),
and instead is composed of mostly 3-D structures. In contrast, deep LMW DOC has almost twice as many pla-
nar aromatic and CRAM-like molecules (20%). Deep LMW DOC Δ14C values were also far more negative than
surface LMW DOC (�578‰ and �343‰, respectively; Broek et al., 2017). These observations are consistent
with both previous studies observing a buildup of CRAM and older DOC molecules at depth and largely sup-
port the hypothesis that structural recalcitrance controls the long-term persistence of DOC in the deep ocean
(Benner et al., 1992; Flerus et al., 2012; Hertkorn et al., 2006; Jiao et al., 2010; Walker, Primeau, et al., 2016).

Although we have limited individual molecular diversity information from the two samples analyzed in this
study, our results appear broadly inconsistent with dilution and molecular diversity as a principle control
on LMW DOC cycling. The dilution hypothesis would predict deep LMW DOC to have a much higher molecu-
lar diversity of structures. However, of all 46 surface and 48 deep molecules, we imaged via AFM, none shared
an identical structure. Thus, our results cannot confirm a change in overall molecular diversity with depth. If
we consider planar aromatics as a “compound-class,” the dilution hypothesis would predict the far more
abundant planar aromatic DOC in the deep ocean to cycle more quickly since it is twice as concentrated
as planar DOC in the surface ocean. It would also predict surface DOC (more diverse, 8% planar aromatics
and mostly 3-D molecules) to cycle slower than deep DOC (less diverse, 20% planar aromatics). However, this
interpretation is inconsistent with the negative LMW DOC Δ14C values we observe at depth. Given these
points, our results appear to be more consistent with structural recalcitrance as a predominant control on
LMW DOC cycling.

5. Implications and Future Work

Our results provide the first real space images of single marine LMW DOC molecules with high-resolution
AFM and offer insight into the biogeochemistry of marine aromatic compounds. Using North Pacific LMW
DOC samples (Broek et al., 2017), we were able to directly evaluate selected planar structures of the more
refractory LMW component of DOC. We show evidence that the majority of LMW DOC molecules feature a
nonplanar geometry with nonplanar carbon structures and a significant content of aliphatic moieties.
These observations are generally consistent with recent high-resolution FT-ICR-MS and nuclear magnetic
resonance work suggesting a high diversity of aliphatic, and CRAM-like structures. At the same time, a surpris-
ing fraction of deep LMW DOC (~20%) could be identified as planar molecules (versus 8% in the surface).
While the visualized structures are not representative of the entire sample, the difference in planar molecules
observed could either reflect strong AFM interference by nonplanar molecules from the surface ocean or pos-
sibly suggest more dynamic cycling of LMWDOCmolecules in the surface ocean, in contrast to the “refractory
background” pool concept. Our deep LMW DOC results are consistent with the idea that structural recalci-
trance exerts a primary control on deep DOC cycling. Future work can evaluate the recalcitrance of these
structures directly using 14C. Compound specific radiocarbon analysis of the individual aromatic rings in
DOC can be extracted from DOC using a high temperature nitric acid digestion to liberate corresponding
benzene polycarboxylic acids (Ziolkowski et al., 2011).

Future work based on high-resolution AFM can further increase the number of known chemical structures in
LMW DOC. The expected increase in the understanding of the AFM contrast of different functional groups
shall allow for more molecular structures to be discerned by AFM imaging in an ensemble of molecules, as
the LMW DOC. Such knowledge would be based on imaging known standard molecules with different car-
bon ring connectivities (Schuler, Zhang, et al., 2017) as well as PAHs with different heteroatoms (Hapala
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et al., 2016; Kocić et al., 2016). Another possible venue to be explored is the planarization of molecules via
atom manipulation (Majzik et al., 2016). A planar specific stoichiometry pretreatment of DOC samples would
allow for high recoveries of images of individual compounds. We suggest that this method can be applied to
other ocean basins to investigate individual chemical structures present, which may be representatives of
structural classes most responsible for the long-term stability of DOC in the refractory DOC pool.
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