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1.  INTRODUCTION

Studying the past ecology of extant but threatened
marine species that have been subjected to direct
(e.g. overfishing, pollution) and indirect (e.g. climate
change) threats can provide a framework for conser-
vation efforts by defining the ecological plasticity of
species over evolutionarily relevant timescales (Swet -
nam et al. 1999, Jackson et al. 2001). Museum collec-
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ABSTRACT: The short-tailed albatross Phoebastria al-
batrus was nearly driven to extinction in the early 20th

century, but is one of the most common seabirds
found in coastal archaeological sites in Japan, the
Aleutian Islands, and the Channel Islands off southern
California. Today, this species nests on only 2 islands
off southern Japan and spends the majority of its time
foraging in waters west of the Aleutians. We used car-
bon and nitrogen isotope analysis of bulk tissue (bone
collagen) and its constituent amino acids from modern
samples of all 3 North Pacific albatross species as well
as ancient short-tailed albatross to show that ancient
short-tailed albatross foraged east of the Aleutian Is-
lands more frequently than their modern counterparts.
Isotope mixing models correctly assigned each species
to its known foraging habitats, validating our ap-
proach on ancient short-tailed albatross. Mixing  models
also showed that ancient short-tailed albatross from
both western and eastern North Pacific archaeological
sites spent more time in the California Current than
their modern congeners. However, ancient albatross
remains from archaeological sites off southern Cali-
fornia are isotopically distinct from those found in
sites from the western North Pacific, suggesting this
species previously had a more complex population
structure. We found that modern short-tailed alba-
tross occupy a higher trophic level than their ancient
 counterparts, which may be due to their consumption
of bait and offal from longline fisheries. As extant
short-tailed albatross recover from historical  over-
exploitation, the reconstruction of their historical ecol-
ogy helps in identifying likely areas for foraging and
possible breeding range expansion.

Short-tailed albatross Phoebastria albatrus nesting on an
egg at the main colony on Torishima, Tsubame-zaki, Japan. 
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tions and archaeological sites contain materials that
have been used to reconstruct ecological systems prior
to extensive human disturbance (Olson & Hearty 2003,
Newsome et al. 2007, Eda et al. 2012, Wiley et al.
2013). Such historical baselines offer insights into pre-
exploitation conditions that can be important when
designing management plans for species that cur-
rently occur in relict populations (Lotze & Worm 2009).

The short-tailed albatross Phoebastria albatrus is
an example of a species that was driven to near
extinction by human exploitation. Pre-exploitation
population size has been estimated to be >1 million
individuals distributed across ~14 colonies, but plum-
meted to ~100 individuals on 2 nesting colonies
(Senkaku and Torishima Islands) off southern Japan
before cessation of commercial harvest in 1933 (Hase -
gawa & DeGange 1982, USFWS 2008). Landmark
conservation policies protecting albatross breeding
colonies in the early 20th century (USFWS 2008) were
followed by the emergence of another threat, in -
dustrialized fishing, which increased mortality from
bycatch (Arata et al. 2009). Due to protection of
colonies on land and adults at sea, along with suc-
cessful translocation efforts, the current population
is growing at carrying capacity and population size
has reached several thousand individuals (Deguchi
et al. 2017), though it remains well under historic
estimates.

The Holocene coastal archaeological record
(~11200−300 yr BP) suggests that short-tailed alba-
tross ranged from the mainland coast in the Japan
and Okhotsk Seas, north to the Bering Strait and
Aleutian Islands, and in the eastern Pacific from
the Gulf of Alaska to Baja California (Yesner 1976,
Hasegawa & DeGange 1982, Porcasi 1999, Eda &
Higuchi 2004). Notably, short-tailed albatross are the
dominant seabird species found in some central and
southern California archaeological sites, particularly
the Channel Islands (Porcasi 1999, Erlandson et al.
2011), which contrasts with their modern distribution
that is primarily constrained to the western Pacific
and Aleutian Islands (Suryan et al. 2006, Kuletz et al.
2014). This suggests that ancient populations spent
more time foraging in the California Current than the
current population, and perhaps also bred on islands
in the eastern Pacific (Porcasi 1999).

Carbon (δ13C) and nitrogen (δ15N) isotope analysis
of tissues archived in museum collections and ar -
chaeological sites is a powerful tool for studying past
life histories of marine organisms (e.g. Burton et al.
2001, Newsome et al. 2007, Wiley et al. 2013). Isotope
values of mobile marine consumers reflect a combi-
nation of the isotopic composition of the base of the

food webs in which they forage, as well as diet
 composition. Consumers typically have higher iso-
tope values than their food due to physiologically
mediated isotopic discrimination that occurs during
resource assimilation and tissue synthesis; such
 offsets are often called trophic discrimination fac-
tors (TDFs), and vary from 0 to 3 and 2 to 5‰ for δ13C
and δ15N respectively (Vanderklift & Ponsard 2003,
DeNiro & Epstein 1978). To untangle the sometimes
confounding effects of diet composition from spatial
variation in the (baseline) isotopic composition of pri-
mary producers, researchers have used compound-
specific isotope analysis (CSIA) of δ13C (δ13CAA) and
δ15N (δ15NAA) values of individual amino acids (AAs).
Animals must acquire essential amino acids (EAAs)
directly from their diet to build and maintain pro-
teinaceous tissues, thus the δ13C value of this class of
AAs shows little to no isotopic fractionation as these
molecules move up the food chain (Howland et al.
2003, McMahon et al. 2015). For δ15NAA, certain AAs
undergo significant isotopic discrimination during
transamination and deamination linked to the cen-
tral glutamate pool (McMahon & McCarthy 2016,
O’Connell 2017), and as such are commonly termed
trophic AAs (e.g. glutamic acid, proline). Other AAs
(e.g. phenylalanine) show little nitrogen isotope dis-
crimination with trophic level and are termed source
AAs (McClelland & Montoya 2002, Popp et al. 2007,
Chikaraishi et al. 2009). Thus, AA isotope analysis of
tissues collected from mobile marine consumers has
the capacity to simultaneously estimate trophic level
(TL) and identify foraging habitat(s) that have dis-
tinct baseline isotope values (McMahon & McCarthy
2016).

Establishing the isotope signatures at the base of
the food web of a given region is a prerequisite to
tracing movement patterns of organisms with isotope
analysis (Graham et al. 2010). Ocean circulation pat-
terns and latitudinal gradients in abiotic factors such
as temperature result in zones with distinct biogeo-
chemical cycling, which drive the spatial distribu-
tions of isotope values (isoscapes) of primary pro -
ducers and primary consumers at the base of marine
food webs (Graham et al. 2010, McMahon et al. 2013,
Vokhshoori et al. 2014, Vokhshoori & McCarthy
2014). For δ15N, spatial gradients in isotopic baselines
are typically driven by relative rates of N-fixation
versus denitrification, coupled with the extent of
 vertical mixing that supplies nitrate from intermedi-
ate water depths (Sigman et al. 2009). Baseline δ13C
gradients in marine systems are generally driven by
a more complex mixture of biological and physico-
chemical controls, including sea surface temperature
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and the concentration of dissolved CO2 (Rau et al.
1989), phytoplankton physiology (Fry & Wainright
1991, Popp et al. 1998), growth rate (Laws et al.
1995), and the composition of the primary producer
community (e.g. micro- versus macroalgae) (Larsen
et al. 2013). These baseline isotope gradients have
been used to study the movement of tuna (Madigan
et al. 2014, Lorrain et al. 2015), sharks (Carlisle et al.
2012), sea turtles (Turner Tomaszewicz et al. 2017),
and pinnipeds (Burton et al. 2001, Aurioles et al.
2006) in the North Pacific.

In this study, we first built a basin-scale δ13C and
δ15N isoscape of the North Pacific, and then used
archived tissues from museum collections and ar -
chaeological sites to reconstruct long-term temporal
changes in the distribution patterns of short-tailed
albatross. Our main objective was to use δ13C and
δ15N analysis of both bulk tissue (bone collagen) and
its constituent AAs to compare the foraging distribu-
tion and TL of ancient populations of short-tailed
albatross relative to their modern counterparts and
the other 2 albatross species endemic to the North
Pacific: black-footed P. nigripes and Laysan P. im -
mutabilis. We compared the modern isotope data
set to satellite tracking data as a means to validate
our approach. Ancient short-tailed albatross samples
were sourced from 4 geographically distinct regions
in the western and eastern North Pacific, while mod-
ern samples were largely sourced from bycatch pro-
grams in the central and eastern North Pacific. We
used published data of primary producers and pri-
mary consumers to build an isoscape of the North
Pacific to interpret our bulk tissue and AA isotope
patterns from albatrosses, and test the hypothesis
that ancient populations of short-tailed albatross
spent a substantial portion of their annual life cycle
foraging in the productive California Current in the
eastern Pacific, in contrast to their modern counter-
parts. This new information on the past ecology of
short-tailed albatross provides general predictions as
to where this species may expand their range as
it recovers from historical over-exploitation.

2.  MATERIALS AND METHODS

2.1.  Sample collection and preparation

Modern Laysan, black-footed, and short-tailed alba -
tross bone elements were collected from US bycatch
necropsy programs. Ancient short-tailed albatross
bone fragments were curated at either the Santa
 Barbara Natural History Museum, Burke Museum of

Natural History, National Museum of Natural History,
Oregon Museum of Natural and Cultural History, or
the Hokkaido University Museum (see Supplement 1 at
www.int-res.com/ articles/ suppl/ m610 p001_ supp 1–6.
pdf; this URL applies to Supplements 1 to 6). To ex -
tract collagen from bone, a ~25 mg bone fragment of
each sample was demineralized in 0.5 N hy dro chloric
acid (HCl) for ~24 h at ~5°C. Each sample was then
rinsed to neutrality 3 times with deionized water, lipid-
extracted by soaking in a solvent solution of 2:1
 chloroform/ methanol for ~72 h (solvent solution re-
placed every ~24 h), and finally lyophil ized for 24 h.

2.2.  Bulk and amino acid δ13C and δ15N analysis

A total of 0.5 mg of collagen was weighed into 3 ×
5 mm tin capsules, and carbon (δ13C) and nitrogen
(δ15N) isotope values were measured on a Costech
(4010) elemental analyzer coupled to a Thermo Scien-
tific Delta V Plus isotope ratio mass spectrometer
(IRMS) at the University of New Mexico Center for
Stable Isotopes (UNM-CSI). Within-run analytical
error was assessed via repeated analysis of internal
proteinaceous reference materials (Pugel and Acen-
tailide) and was estimated to be ±0.2‰ for both δ13C
and δ15N. Isotopes values are reported using delta (δ)
notation in parts per thousand (‰): δ13C or δ15N =
[(Rsample / Rstandard) − 1] × 1000, where R is the ratio of
heavy to light isotope of the sample (Rsample) and stan-
dard (Rstandard), respectively, referenced to at mo spheric
N2 (air) for δ15N and Vienna PeeDee Belemnite (PDB)
for δ13C. Ancient seabird bones (>1000 yr) were cor-
rected for the Suess Effect; the corrections considered
a rate of δ13C decrease in the atmosphere of 0.16‰
decade−1 since 1960, and of 0.05‰ decade−1 between
1860 and 1960 (Francey et al. 1999, Quay et al. 1992).

Total δ13CAA and δ15NAA values were measured as
trifluoroacetyl isopropyl ester (TFA-IP) derivatives
after acid hydrolysis. First, bone collagen samples
were hydrolyzed by adding ~6−8 mg collagen into
1 ml of 6 N HCl at 110°C for 20 h; tubes were flushed
with N2 before being capped to remove oxygen.
After drying at 60°C under N2, AA isopropyl esters
were prepared with a 1:4 mixture of acetyl chloride:
isopropanol at 110°C for 60 min and then aceytlated
using a 1:1 mixture of dichloromethane (DCM) and
trifluoroacetic anhydride (TFAA) at 110°C for 10 min
(Silfer et al. 1991). Samples were dried and  re-
dissolved in DCM for AA analysis. The δ13CAA and
δ15NAA values were measured using a TRACE 1310
gas chromatograph with IsoLink 2 combustion unit
coupled to a Thermo Scientific Delta V Plus IRMS at
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UNM-CSI, or a Varian gas chromatograph coupled
to a Finnegan Delta-Plus IRMS at the University of
 California Santa Cruz Stable Isotope Laboratory. AA
stock standard and a cyanobacteria sample were
analyzed on both instruments for inter-laboratory
comparison and performance of instruments (Sup-
plement 2).

Using this method, we measured δ13C and δ15N val-
ues of the following AAs in bone collagen: alanine
(Ala), glycine (Gly), threonine (Thr), serine (Ser),
valine (Val), leucine (Leu), isoleucine (Ile), proline
(Pro), aspartic acid (Asp), glutamic acid (Glu), phenyl -
alanine (Phe), tyrosine (Tyr), and lysine (Lys). All
samples were analyzed in duplicate for carbon and
triplicate for nitrogen. Measured δ13CAA values were
corrected for the carbon added during derivatization
following the approach of Silfer et al. (1991) and Hare
et al. (1991). Reproducibility as estimated with stan-
dard deviation for collagen samples was typically
less than <0.3‰ (range: 0.0−0.6‰) for carbon and
<0.5‰ for nitrogen (range: 0.1−1.3 ‰).

2.3.  Data analysis

We tested several working CSIA-based trophic
level equations; however, we chose the TDFPro-Phe

derived from McMahon & McCarthy (2016):

TLProline = 1 + [(δ15NPro − δ15NPhe) − 3.1] / 5.2 (1)

where 3.1‰ is the typical TDF of plankton and other
lower TL marine organisms (e.g. Chikaraishi et al.
2009, 2014) and 5.2‰ is the TDFPro-Phe from a meta-
analysis of controlled feeding studies (McMahon &
McCarthy 2016) and a mean propagated error of 0.2;
see Supplement 3 for a more detailed description of
why we chose to use TDFPro-Phe to estimate TL.

Two approaches were used to estimate baseline
isotope values based on CSIA. The first used the non-
fractionating δ15NAA source (δ15NBaseline) and δ13CAA

essential amino acids (δ13CBaseline):

δ15NBaseline = δ15NPhe − 0.4(TL) (2)

where δ15NPhe is the isotope value of an albatross
minus a small enrichment factor (0.4‰) due to trophic
transfer (Chikaraishi et al. 2009), and 

δ13CBaseline = 1.1 × (δ13CPhe) + 7.4 (3)

where δ13CPhe is the measurement EAA isotope
value, 1.1 is the slope of a line between measured
δ13C bulk and δ13CPhe values from phytoplankton
and 7.4 is the associated y-intercept (Supple-
ment 4).

The second approach used bulk tissue isotope val-
ues corrected for mean TL estimated using Eq. (1)
and applied to the bulk isotope value of each individ-
ual from that group. We used this record for the iso-
tope mixing model because it is a much larger data
set, and therefore enhances statistical resolution:

δ13CTDF-CORR = δ13CBulk − [1.5 + (1.1 × mean TLPro)] (4)

and

δ15NTDF-CORR = δ15NBulk − (3.1 × mean TLPro) (5)

where 1.5‰ is the δ13C offset between bone collagen
of a piscivorous seabird and diet (δ15N showed virtu-
ally no offset), and 1.1 and 3.1‰ are the TDFs for
δ13C and δ15N respectively (Hobson & Clark 1992).

For analysis, t-tests, ANOVAs and mixing models
were performed in R (v.3.3.1) with RStudio interface
(v.0.98.1028). Normality (Q-Q plots) and homosce -
dasticity (Bartlett's test) of the data were verified
before statistical analyses. We calculated standard
ellipse areas (SEA) for each albatross population
using the stable isotope Bayesian ellipses in R pack-
age (SIBER; Jackson et al. 2011) and used the stable
isotope analysis in R package (SIAR; Parnell et al.
2010) to run mixing models.

3.  RESULTS

3.1.  North Pacific province δ13C and δ15N values

North Pacific biogeochemical marine provinces used in
this study were adapted from Longhurst (2007) and
are defined by unique hydrographic and biological
processes (Fig. 1A). We further characterized these
provinces isotopically by compiling mean δ13C and
δ15N baseline values from the literature for each region.
We used isotope data from a combination of particulate
organic matter (POM) of the upper 100 m of the water
column, primary consumers (e.g. zooplankton) cor-
rected for TL, or organic matter from surface sediment
(<100 m depth). Lastly, we used  primary producer and
primary consumer δ13CAA and δ15NAA data for baseline
isotope values when available (Supplement 5).

We found significant differences in baseline iso-
tope values of marine provinces for both δ13C (F5,538 =
12.98, p < 0.001) and δ15N (F5,542 = 57.48, p < 0.001);
see Supplement 5 for results of pairwise compari -
sons among provinces. Overall, North Pacific base-
line δ13C and δ15N values ranged from −25 to −19‰
and −3.0 to 9.0‰ respectively (Fig. 1B). The North
Pacific Subtropical Gyre (NPSG) had the lowest
mean δ15N value (−1.1 ± 1.9‰), and California Cur-
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rent System (CACS) displayed the highest δ15N value
(6.6 ± 2.1‰). Kuroshio Current (KURO) and Oyashio
Current (OYAS) both had intermediate δ15N values
(4−5‰). For δ13C, North Pacific Epicontinental Pro -
vince (NPEC) had the lowest values (−24.3 ± 1.0‰),
in contrast, δ13C baseline values ranged from −18.5
to −22.0‰ at lower latitudes such as the NPSG and
the Alaska Downwelling System (AKDS). KURO had
more positive δ13C values (−20.9 ± 0.8‰) than OYAS
(−22.1 ± 1.4‰).

3.2.  Albatross bulk tissue δ13C and δ15N

We found significant differences in bulk bone col-
lagen δ13C (F6,249 = 64.57, p < 0.001) and δ15N (F6,249 =
49.97, p < 0.001) isotope values (Fig. 2) among mod-
ern albatross species and ancient short-tailed alba-
tross sourced from the eastern and western North
Pacific; see Table 1 for sample sizes, mean isotope
values (±SD), and results of pairwise comparisons
among species and groups. Briefly, however, bulk
δ13C and δ15N values for modern albatrosses ranged
from about −19 to −14‰ and 14 to 19‰ respectively.
Ancient short-tailed albatross generally had higher
δ13C and δ15N values compared with the modern
 seabirds: δ13C and δ15N values ranged from −17 to

−13.0‰ and 15 to 21‰ respectively. There was a
greater range (~5‰) in δ15N values for modern
black-footed albatross in comparison with the other 2
(modern) seabird species (~3‰ range) and ancient
short-tailed albatross (~3−4‰ range).
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3.3.  AA-based estimates of albatross TL

Estimates of trophic level based on TLPro ranged from
3.5 to 4.1 (Fig. 3), where black-footed had the highest TL
and Laysan had the lowest. We found  significant differ-
ences in TL (F2,75 = 4.5, p = 0.001) among albatross spe-
cies (Table 1); pairwise comparisons showed that black-
footed occupied a higher TL than ancient short-tailed
from the Channel (p = 0.03) and Kuril Islands (p = 0.02),
as well as modern Laysan (p = 0.01) albatross. Modern
short-tailed had a higher mean TL (3.9) than their ancient
counterparts (3.7−3.8), however, this difference was not
significant (Channel Islands p = 0.99; Kuril Islands p =
0.17; Rebun Island p = 0.07).

3.4.  AA-derived baseline δ13C and δ15N estimates from
albatrosses

SEAs based on δ13CBaseline and δ15NBaseline data repre-
sent the isotopic niche width (units: ‰2) of baseline
sources of primary production in foraging habitats used
by modern and ancient albatrosses (Fig. 4, Supplement 6).
Baseline isotopic niche widths for modern and ancient
albatrosses showed similar patterns to the bulk data set
(Fig. 2), with a few exceptions. Modern black-footed
albatross had the broadest baseline isotopic niche width
(5.0‰2), which overlapped with both Laysan and short-
tailed, both which had relatively smaller baseline iso-
topic niche widths (1.5−3.5‰2; Fig. 4A). Laysan had dis-
tinctly lower δ13CBaseline and slightly lower δ15NBaseline

values compared to the other species. Ancient short-
tailed albatross had δ15NBaseline values similar to their mod-
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ern congeners but in general had higher δ13CBaseline

values (Fig. 4B). Ancient short-tailed albatross from
the Channel Islands in the eastern Pacific had the
largest baseline isotopic niche breadth (6.5‰2;
Fig. 4B). Ancient short-tailed albatross from Rebun
Island and the Kuril Islands in the western Pacific
had overlapping baseline isotopic niches (3.5‰2),
which contrasts with the patterns in the bulk tissue
data set (Fig. 2) where ancient short-tailed albatross
from the Channel and Kuril Islands had overlapping
isotope values and specimens from Rebun Island
had distinctly higher δ13C values. Overall, both the
bulk tissue and AA baseline data indicate that an -
cient short-tailed albatross had higher δ13CBaseline and
δ15NBaseline values than their modern counterparts and
other North Pacific albatross species (Table 1).

3.5.  Foraging distribution

The bulk tissue data corrected for TL based on AA
δ15N results (TLPro) was used in the SIAR mixing
model because it was a much larger data set, there -
fore enhancing statistical resolution (see Supplement 7
at www. int- res. com/ articles/ suppl/ m610  p001 _ supp7.
xlsx for detailed isotope data). Based on model output,
all individual albatrosses fell within the range of base-
line values for the marine provinces (Fig. 5A) and
used multiple marine provinces to forage (Fig. 5B).
Modern black-footed albatross baseline isotope sig-
natures predominately overlapped in NPEC (40%)
followed by NPSG (25%) and then AKDS (~15%).
Modern Laysan albatross overlapped in the more
northwestern provinces with about equal distribution
in NPEC (30%), OYAS (~20%), and KURO (~20%).
Obtaining samples of modern short-tailed albatross
was very difficult and thus our sample size is re -
latively small (n = 7), however, mixing models indi -
cate highest overlap in NPEC (~40%), and ~5−20%
for the remaining marine provinces (e.g. AKDS and
OYAS). Ancient short-tailed albatross predominately
overlapped with marine provinces in the eastern Pa-
cific. Ancient short-tailed albatross from the Channel
Islands had the highest overlap with the CACS (50%)
and AKDS (30%) provinces. Ancient short-tailed from
the Kuril Islands had equal overlap in CACS (40%)
and AKDS (40%), and ancient specimens from Rebun
Island overlapped most with AKDS (70%) followed by
CACS (20%).

4.  DISCUSSION

Our bulk tissue and compound-specific isotopic ap -
proach enabled us to generate a broad population-
level understanding of both modern and historical
North Pacific albatross ecology. The overall patterns
in both the bulk tissue data (Fig. 2) and AA-based
estimates of isotopic baseline (Fig. 4) were in general
agreement, suggesting that the primary driver for
observed offsets in bulk tissue isotope values among
species and/or ancient versus modern populations is
geographical differences in foraging regions, with
the secondary driver likely being variation in diet
composition (e.g. TL). In the following subsections,
we first discuss the underlying mechanisms of mar-
ine province isoscape patterns. We then compare TL
estimates in the context of diet data for North Pacific
albatrosses based on genetic techniques, and vali-
date our isotopic approach by comparing it to known
movement patterns of the 3 modern North Pacific

7

A) Modern North Pacific Albatrosses

B) Ancient Short-tailed Albatrosses
 

−25 −24 −23 −22 −21 −20 −19 −18 −17 −16

4

6

8

3

5

7

9

10

Rebun Island

Modern

Channel Islands

Kuril Islands

−25−26 −24 −23 −22 −21 −20 −19

5

4

6

7

8

9

10

Black-footed

Short-tailed

Laysan

δ1
5 N

B
as

el
in

e 
(‰

)
   

   
   

   
   

δ13CBaseline (‰)

δ13CBaseline (‰)

δ1
5 N

B
as

el
in

e 
(‰

)
   

   
   

   
   

Fig. 4. Baseline production values estimated from amino
acid (phenylalanine) δ13C and δ15N values of bone collagen
of (A) modern albatross and (B) ancient short-tailed alba-
tross. Colored ellipses represent the standard bivariate ellipse
areas for each of the groups. See Section 2.3. for how base-

line isotope values were calculated

https://www.int-res.com/articles/suppl/m610p001_supp7.xlsx
https://www.int-res.com/articles/suppl/m610p001_supp7.xlsx


Mar Ecol Prog Ser 610: 1–13, 2019

albatross species based on satellite telemetry. Finally,
we interpret the historical movement and foraging
behavior of short-tailed albatross from 3 archaeolog-
ical sites, 2 in the western and 1 in the eastern North
Pacific, in the context of what is known about the
ecology of the rapidly growing modern short-tailed
albatross population.

4.1.  North Pacific oceanographic province isoscapes

Low δ15N values (−1.1 ± 1.9‰) in the NPSG are
commonly attributed to N2-fixation by diazatrophic
cyanobacteria (Capone et al. 1997). Conversely, the
CACS high δ15N values (6.6 ± 2.1‰) are due to the
northward flowing California undercurrent, which
carries denitrified waters with characteristically high
nitrate (NO3) δ15N values from the eastern tropical
North Pacific (Altabet et al. 1999, Voss et al. 2001,
Vokhshoori & McCarthy 2014). The KURO and OYAS
both have intermediate δ15N values (4−5‰), indica-
tive of regions in which nitrogen could be sourced
from a combination of upwelled NO3 and/or  N2-
fixation (Yamazaki et al. 2011). For δ13C, the most
northern marine province in our study, the NPEC,
had the lowest values (−24.3 ± 1.0‰). Primary pro-
ducers in high-latitude waters typically have lower
δ13C values relative to those in temperate and tropi-

cal latitudes, primarily because of higher dissolution
of CO2 into colder seawater that increases the car-
bon isotope fractionation between phytoplankton cells
and CO2 (δ13C), lower phytoplankton growth rates,
and phytoplankton community dynamics typically
characterized by seasonal blooms of large phyto-
plankton cells (Rau et al. 1982, Goericke & Fry 1994).
In contrast, δ13C baseline values ranged from −18.5 to
−22.0‰ at lower latitudes such as the NPSG, which
is likely caused by a combination of lower [CO2]
in warmer waters and correspondingly lower δ13C,
higher phytoplankton growth rates, nutrient limita-
tion, and fractionation effects associated with small
phytoplankton cell size (Bidigare et al. 1997, Popp et
al. 1998). The AKDS also had higher δ13C values,
likely linked to enhanced productivity and larger
cells (Pomerleau et al. 2014, Hertz et al. 2016). While
downwelling systems are typically associated with
low productivity, the AKDS is highly productive due
to eddies and advection that delivers resuspended nu -
trients to the continental shelf (Stabeno et al. 2004).
The KURO had more positive δ13C values (−20.9 ±
0.8‰) than OYAS (−22.1 ± 1.4‰). The KURO is a fast,
warm water western boundary current that trans-
ports equatorial waters northward. The OYAS, also a
western boundary current, transports cold water from
the subarctic southward and therefore has lower δ13C
isotope values than the KURO.
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4.2. Trophic level

The TLPro values we measured for both modern and
ancient North Pacific albatross (3.1 to 4.6; Fig. 3) are
consistent with the few studies that report TLs for the
Diomedeidae family (3.5 to 5.3; Sydeman et al. 1997,
Cherel et al. 2010). We therefore believe our TL esti-
mates that utilize proline as the primary trophic AA
are reasonable. Albatross are opportunistic foragers
that prey on and/or scavenge a combination of inter-
mediate and higher TL organisms such as squid, fly-
ing fish, or even marine mammal carrion, as well as
small lanternfishes, crustaceans, and cnidarians near
the base of the food chain (Harrison et al. 1983,
Walker et al. 2015, McInnes et al. 2017, Conners et al.
2018). Modern black-footed albatross clearly forage
at a higher TL than modern Laysan and short-tailed
albatross, a pattern consistent with previous observa-
tions (Fig. 3; Harrison et al. 1983, Gould et al. 1997,
Walker et al. 2015, Conners et al. 2018). Another
intriguing pattern in our results is that modern short-
tailed albatross occupy a slightly but not significantly
higher TL than all 3 ancient short-tailed populations,
which suggests that the trophic ecology of short-
tailed albatross may have shifted in response to
increasing human disturbance of their open-ocean
pelagic habitat. We hypothesize that this could be a
consequence of the modern seabird’s interaction
with commercial fisheries, where high TL prey in the
form of bycatch, processor discards (offal), and baits
(Pacific saury Cololabis saira and Argentine shortfin
squid Illex argentinus) used in long-line fisheries in
the North Pacific (Walker et al. 2015) are spatially
concentrated by such open-ocean fishing techniques,
making it easier for albatrosses (and other seabird
species) to opportunistically scavenge this novel re -
source. Both black-footed and Laysan albatrosses
routinely exploit such resources (Fischer et al. 2009),
and the primary threat to short-tailed albatross
recovery is entanglement in longlining fishing gear
(Suryan et al. 2007); see Supplement 3 for further
 discussion of TL.

4.3.  Foraging habitats

The marine province designations derived from
our isotope mixing model agree with satellite and
observation-based studies of North Pacific albatross
movement patterns. Black-footed and Laysan alba-
tross share nesting grounds in the central Pacific
(Hyrenbach et al. 2002) and overlap to a large degree
during the breeding season (December to April), but

these species use different regions of the North
Pacific during the non-breeding season from June to
October (Fig. 1; Suryan & Fischer 2010). Overall,
these patterns result in these 2 species largely ex -
ploiting different regions over multi-year timescales
(Fig. 1). For this study, black-footed and Laysan alba-
tross included specimens collected from Hawaiian
and northwestern Alaskan fisheries, whereas short-
tailed albatross included bycaught specimens from
the Pacific cod Gadus macrocephalus fishery in the
Bering Sea and Aleutian Islands and one beach-cast
specimen from Morro Bay, CA. Our results show
that black-footed and Laysan albatross have some
isotopic overlap with the subtropical gyre region
(10−15%; Fig. 5B), which might reflect time spent
foraging in this region during the breeding season
(Hyrenbach et al. 2002). Throughout the year, but
more apparent outside of the breeding season,
Laysan albatross spend the greatest amount of time
in oceanic pelagic waters away from the continental
shelf (Fischer et al. 2009, Suryan & Fischer 2010), and
in the Kuroshio Extension southwest of Hawaii
(Fisher & Fisher 1972, Fernández et al. 2001). This
movement pattern is likely reflected in the relatively
low δ13CBaseline values for Laysan in comparison to
the other albatross species (Fig. 4A; Fry & Wainright
1991, Hemminga & Mateo 1996), while mixing model
results show the highest degree of overlap of Laysan
to provinces OYAS and KURO that most closely
matched the Kuroshio Extension (Fig. 5B). In con-
trast, the relatively high δ13CBaseline values we meas-
ured for modern short-tailed and black-footed alba-
trosses confirm that these species spend more time
foraging in neritic waters near the continental shelf-
slope break. These 2 albatross species typically visit
steep bathymetric features such as continental shelf
and slope gradients along the Aleutian Island chain
and Alaskan current, with short-tailed albatross
ranging farther north and black-footed ranging more
southeast (Suryan et al. 2006, Kuletz et al. 2014). Our
mixing model results therefore correctly assigned
black-footed albatross a foraging range in Aleutian
Island chain (NPEC) and Gulf of Alaska (AKDS)
provinces, and short-tailed baseline isotope signa-
tures overlapped most with NPEC.

The baseline isotopic niche widths (Fig. 4) show
that modern black-footed albatross have the broad-
est foraging range of all the North Pacific species,
while Laysan albatross have the narrowest range.
This conclusion is supported by satellite telemetry
data showing that black-footed albatross in the cen-
tral North Pacific will fly to shelf-slope breaks along
the Aleutian Islands, Gulf of Alaska, and California
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Current (Kappes et al. 2010, Suryan & Fischer 2010),
while Laysan albatross from the same nesting site
typically concentrate within the oceanic habitats in
the North Pacific Transition Zone to forage (Hyren-
bach et al. 2002, Kappes et al. 2010). The broad base-
line isotopic niche width of black-footed albatross
may be associated with a range expansion in the last
century (T. Dunlap 1988) in response to the historical
population collapse of short-tailed albatross (Yesner
1976). Overall, our mixing model results for modern
North Pacific albatrosses (Figs. 4 & 5) strongly match
published satellite-tracking data (e.g. Kappes et al.
2010, Sur yan & Fischer 2010), confirming that this
approach is useful for assessing the movement pat-
terns of historical and ancient seabird populations.

Bulk bone collagen tissue and AA data for ancient
short-tailed albatross sourced from archaeological
sites indicates that they occupied a distinct isotopic
niche from their modern counterparts (Figs. 2 & 4B).
Specimens from archaeological sites on the Kuril
Islands (Russia) and Rebun Island off northern Japan
overlap almost entirely in δ13CBaseline and δ15NBaseline

space, while ancient samples from the Channel Is -
lands have a very large baseline isotopic niche width
relative to both modern and other ancient short-
tailed albatross. All 3 ancient short-tailed albatross
groups had relatively high δ13CBaseline values, sug-
gesting that they foraged in more nearshore waters
and possibly at lower latitudes than the modern pop-
ulation (Rau et al. 1982). Historical sightings of short-
tailed albatross support this conclusion, reporting
them as abundant in shallow waters of coastal North
America, especially off Alaska (Murie 1959). More-
over, short-tailed albatross are thought to have come
so close to shore that native people on Kodiak Island
sometimes hunted them from kayaks (Hasegawa &
DeGange 1982).

Our isotope mixing model results indicate that
ancient short-tailed albatross populations have the
largest degree of overlap with AKDS and CACS
(Fig. 4B). However, while zooarchaeological records
and isotopic reconstructions can help characterize
former foraging habitats, distinguishing between for-
mer breeding grounds and areas of high abundance
with zooarchaeological data alone is difficult without
evidence of eggshells or bones of pre-fledged chicks.
For example, in the Aleutians, particularly Umnak
Island and Four Mountains, Kotzube (1826) recounts
that native Aleuts exploited short-tailed albatross
nests for birds and eggs. Further, other explorers like
Dall (1872) believed short-tailed albatross bred in the
Aleutian Islands, having seen mutilated carcasses of
very young birds. Zooarchaeological remains from

the family Diomedeidae (especially short-tailed alba-
tross) are prevalent in sites on the Japanese Islands
(Eda & Higuchi 2004), Aleutian Island Chain (Yesner
1976), and North America (Howard & Dodson 1933,
Friedman 1934, Murie 1959). For example, short-tailed
albatross are frequently one of the most abundant
seabird species present in archaeological sites on the
Channel Islands off southern California. However,
none of these sites contained the remains of fledgling
albatross, so it is still uncertain whether short-tailed
albatross had nesting grounds in the northeastern
Pacific. By analyzing ancient mitochondrial DNA
(aDNA) extracted from archaeological samples exca-
vated in southern Japan, Eda et al. (2012) found that
short-tailed albatross grouped into 2 distinct popula-
tions whose level of genetic divergence exceeded
that between sister species of other modern albatross
populations. Our results indicate that ancient Chan-
nel Island seabirds had a different isotopic niche
from the other 2 ancient sites (Fig. 4B), supporting the
idea that there were 2 distinct populations of short-
tailed albatross. Future work examining aDNA of
ancient short-tailed remains from archaeological sites
in the Aleutian and Channel Islands could provide a
full phylogenetic context for understanding the re -
cent demography of these sub-groups.

4.4.  Conclusions

Our results demonstrate that both bulk tissue and
AA isotope data are informative for understanding
past and present albatross foraging and movement
ecology. Our bulk tissue results provided larger sam-
ple size to compare our different albatross groupings,
while our CSIA data set allowed us to estimate TL
and baseline isotope values. We found that ancient
short-tailed albatross populations had more positive
δ13CBaseline and δ15NBaseline values, indicating more use
of the California Current and Gulf of Alaska than
their modern counterparts. We hypothesize that this
is because ancient populations foraged in nearshore
habitats at lower latitudes in the eastern North
Pacific than they do today. Whether the Aleutian
and/or Channel Islands were former nesting grounds
still remains uncertain; future work combining our
isotopic approach with the analysis of ancient mtDNA
could potentially answer this question. North Pacific
albatross migratory patterns have shifted in re cent
decades in response to environmental changes (Kuletz
et al. 2014), and while extant populations recover
from historic over-exploitation and continue to grow
at near capacity (Deguchi et al. 2012), more shifts in
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distribution and foraging habitats may occur. For
example, Laysan albatross has the largest and most
stable extant population of the 3 Dio mediedae species
endemic to the North Pacific and recently underwent
a ~4000 km breeding range ex pansion to  Gua da lupe
Island off the coast of Mexico where they had not
been previously documented (E. Dunlap 1988). Over-
all, our results indicate a more complex population
structure for ancient short-tailed albatross popula-
tions in comparison to their modern counterparts,
which provides insight into how this species may
behave as its population recovers former foraging
and perhaps breeding territory. Such data sets high-
light the importance of understanding the ecology of
species that was truncated by historical human over-
exploitation and are now living in relict populations.
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